Skip to main content
NimbleBrain Studio makes it easy to connect your MCP servers to popular AI clients, code editors, and development frameworks with automatically generated configurations.

Available Integrations

Client connection options NimbleBrain supports integration with:

Claude Desktop

Official Claude desktop application

Claude Code

AI-powered coding assistant

Cursor

AI-first code editor

Codex

OpenAI Codex integration

ChatGPT

OpenAI ChatGPT custom actions

LangChain

Python/TypeScript agent framework

Getting Started

1

Install an MCP Server

Navigate to Toolbox and install an MCP server from the catalog
2

Click Connect

On any installed server, click the Connect button
3

Choose Your Client

Select the client you want to integrate with from the list
4

Follow Setup Instructions

Copy the generated configuration and follow the step-by-step guide

Claude Desktop

Claude Desktop integration

Setup Instructions

1

Open Claude Desktop application

Launch the Claude Desktop app on your machine
2

Go to Settings → Developer → Edit Config

Navigate to the configuration editor in Claude Desktop settings
3

Add the JSON configuration below to your mcpServers section

Paste the generated configuration into your config file
4

Restart Claude Desktop

Fully quit and restart Claude Desktop
5

The server will appear in your available tools

Look for the 🔌 icon indicating tools are available

Configuration Format

{
  "mcpServers": {
    "echo": {
      "command": "npx",
      "args": [
        "@nimbletools/mcp-http-bridge",
        "--endpoint",
        "https://mcp.nimbletools.ai/{workspace-id}/{server-name}/mcp",
        "--token",
        "YOUR_WORKSPACE_TOKEN"
      ],
      "auth": null,
      "oauth": false
    }
  }
}

Configuration Files

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
Back up your existing config before making changes!

Claude Code

Claude Code integration

Setup Instructions

1

Open your Claude Code configuration

Access Claude Code settings in your editor
2

Navigate to MCP Servers settings

Find the MCP configuration section
3

Add the JSON configuration below

Paste the generated JSON configuration
4

Reload the window (Cmd/Ctrl + R)

Restart Claude Code to apply changes
5

The server will be available in your session

The MCP server will now be accessible

Configuration Format

{
  "mcpServers": {
    "echo": {
      "command": "npx",
      "args": [
        "@nimbletools/mcp-http-bridge",
        "--endpoint",
        "https://mcp.nimbletools.ai/{workspace-id}/{server-name}/mcp",
        "--token",
        "YOUR_WORKSPACE_TOKEN"
      ]
    }
  }
}
Claude Code uses a simplified configuration without auth fields.

Cursor

Cursor integration

Setup Instructions

1

Open Cursor settings (Cmd/Ctrl + ,)

Access the Cursor settings panel
2

Search for "MCP" or "Model Context Protocol"

Navigate to the MCP configuration section
3

Add the configuration below to your MCP servers

Paste the generated configuration
4

Restart Cursor

Fully quit and restart Cursor
5

Access the server through Cursor's AI features

Use Cursor’s AI chat and features with your MCP server

Configuration Format

{
  "mcpServers": {
    "echo": {
      "command": "npx",
      "args": [
        "@nimbletools/mcp-http-bridge",
        "--endpoint",
        "https://mcp.nimbletools.ai/{workspace-id}/{server-name}/mcp",
        "--token",
        "YOUR_WORKSPACE_TOKEN"
      ]
    }
  }
}

LangChain

LangChain integration

Setup Instructions

1

Install required dependencies

Run: pip install langchain requests
2

Copy the Python code below to your project

Use the generated Python integration code
3

Replace tool names with actual names from your MCP server

Update the tool configuration to match your server’s tools
4

Initialize your LLM (OpenAI, Anthropic, etc.)

Set up your preferred language model
5

Run the agent with your prompts

Execute the agent with your queries

Python Integration Code

from langchain.tools import Tool
from langchain.agents import initialize_agent, AgentType
import requests

# Configure MCP connection
MCP_ENDPOINT = "https://mcp.nimbletools.ai/{workspace-id}/{server-name}/mcp"
MCP_TOKEN = "YOUR_WORKSPACE_TOKEN"

def call_mcp_tool(tool_name: str, **kwargs):
    """Call an MCP tool via HTTP"""
    headers = {"Authorization": f"Bearer {MCP_TOKEN}"}
    response = requests.post(
        f"{MCP_ENDPOINT}/tools/{tool_name}",
        json=kwargs,
        headers=headers
    )
    return response.json()

# Create LangChain tools
tools = [
    Tool(
        name="echo",
        func=lambda **kwargs: call_mcp_tool("your_tool_name", **kwargs),
        description="Access echo MCP server"
    )
]

# Initialize agent
agent = initialize_agent(
    tools,
    llm,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True
)
Replace your_tool_name with actual tool names from your MCP server’s documentation.

Connection Details

All integrations require two key pieces of information:
Endpoint
string
The MCP server endpoint URL in the format: https://mcp.nimbletools.ai/{workspace-id}/{server-name}/mcp
Access Token
string
Your workspace API token. Generate one in API Tokens settings.

Getting Your Access Token

1

Navigate to API Tokens

Click API Tokens in the sidebar under Workspace Settings
2

Click Create Token

Generate a new API token
3

Copy the Token

Copy the token value immediately (it won’t be shown again)
4

Replace in Configuration

Replace YOUR_WORKSPACE_TOKEN with your actual token

Security Best Practices

  • Never commit tokens to version control
  • Don’t share tokens publicly
  • Rotate tokens regularly (every 90 days)
  • Generate separate tokens for different services
Store tokens in environment variables instead of hardcoding:
export NIMBLEBRAIN_TOKEN="your-token-here"
Reference them in your code:
import os
MCP_TOKEN = os.getenv("NIMBLEBRAIN_TOKEN")
Create read-only tokens for monitoring and full-access tokens only when needed.
Check Activity Logs regularly to monitor token usage and detect unauthorized access.

Troubleshooting

Possible causes:
  • Invalid JSON syntax
  • Token not replaced
  • Client not restarted
Solution:
  • Validate JSON with a validator
  • Ensure YOUR_WORKSPACE_TOKEN is replaced with actual token
  • Fully quit and restart the client application
Possible causes:
  • Server not running
  • Token expired
  • Endpoint URL incorrect
Solution:
  • Check server status in Toolbox (should show “Running”)
  • Generate a new token if expired
  • Verify endpoint URL matches the one in Studio
Possible causes:
  • Token revoked or expired
  • Wrong token for workspace
  • Token not included in request
Solution:
  • Generate new token in API Tokens settings
  • Verify token is for the correct workspace
  • Check token is properly set in configuration
Possible causes:
  • Server scaled to zero (cold start)
  • Network issues
  • Server configuration error
Solution:
  • Wait 5-10 seconds for cold start
  • Check server logs in Toolbox
  • Verify server endpoint is accessible

Advanced Integration

Custom HTTP Bridge Options

The @nimbletools/mcp-http-bridge package supports additional options:
npx @nimbletools/mcp-http-bridge \
  --endpoint "https://mcp.nimbletools.ai/..." \
  --token "YOUR_TOKEN" \
  --timeout 30000 \
  --retry 3
--timeout
number
Request timeout in milliseconds (default: 30000)
--retry
number
Number of retry attempts (default: 3)

Direct HTTP Integration

You can also integrate directly via HTTP without the bridge:
const response = await fetch('https://mcp.nimbletools.ai/{workspace-id}/{server-name}/mcp', {
  method: 'POST',
  headers: {
    'Authorization': `Bearer ${YOUR_TOKEN}`,
    'Content-Type': 'application/json'
  },
  body: JSON.stringify({
    method: 'tools/call',
    params: {
      name: 'tool_name',
      arguments: {}
    }
  })
});
I